skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Lei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For each circle bundleS^{1}\to X\to\Sigma_{g}over a surface with genusg\ge2, there is a natural surjection\pi:\operatorname{Homeo}^{+}(X)\to\operatorname{Mod}(\Sigma_{g}). WhenXis the unit tangent bundleU\Sigma_{g}, it is well known that\pisplits. On the other hand,\pidoes not split when the Euler numbere(X)is not divisible by the Euler characteristic\chi(\Sigma_{g})by Chen and Tshishiku (2023). In this paper, we show that this homomorphism does not split in many cases where\chi(\Sigma_{g})dividese(X). 
    more » « less
    Free, publicly-accessible full text available May 29, 2026
  2. Free, publicly-accessible full text available April 24, 2026
  3. Increasing evidence strongly links neuroinflammation to Alzheimer’s disease (AD) pathogenesis. Peripheral monocytes are crucial components of the human immune system, but their contribution to AD pathogenesis is still largely understudied partially due to limited human models. Here, we introduce human cortical organoid microphysiological systems (hCO-MPSs) to study AD monocyte-mediated neuroinflammation. By culturing doughnut-shape organoids on 3D-printed devices within standard 96-well plates, we generate hCO-MPSs with reduced necrosis, minimized hypoxia, and improved viability. Using these models, we found that monocytes from AD patients exhibit increased infiltration ability, decreased amyloid-β clearance capacity, and stronger inflammatory response than monocytes from age-matched control donors. Moreover, we observed that AD monocytes induce pro-inflammatory effects such as elevated astrocyte activation and neuronal apoptosis. Furthermore, the marked increase in IL1B and CCL3 expression underscores their pivotal role in AD monocyte-mediated neuroinflammation. Our findings provide insight into understanding monocytes’ role in AD pathogenesis, and our lab-compatible MPS models may offer a promising way for studying various neuroinflammatory diseases. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  4. Free, publicly-accessible full text available May 1, 2026
  5. Flat electronic bands are expected to show proportionally enhanced electron correlations, which may generate a plethora of novel quantum phases and unusual low-energy excitations. They are increasingly being pursued in d-electron-based systems with crystalline lattices that feature destructive electronic interference, where they are often topological. Such flat bands, though, are generically located far away from the Fermi energy, which limits their capacity to partake in the low-energy physics. Here we show that electron correlations produce emergent flat bands that are pinned to the Fermi energy. We demonstrate this effect within a Hubbard model, in the regime described by Wannier orbitals where an effective Kondo description arises through orbital-selective Mott correlations. Moreover, the correlation effect cooperates with symmetry constraints to produce a topological Kondo semimetal. Our results motivate a novel design principle for Weyl Kondo semimetals in a new setting, viz. d-electron-based materials on suitable crystal lattices, and uncover interconnections among seemingly disparate systems that may inspire fresh understandings and realizations of correlated topological effects in quantum materials and beyond. 
    more » « less
  6. Multicomponent metallic glasses (MGs) are a fascinating class of advanced alloys known for their exceptional properties such as limit-approaching strength, high hardness and corrosion resistance, and near-net-shape castability. One important question regarding these materials that remains unanswered is how the different elements and atomic bonds within them control their strength and deformability. Here, we present a detailed visual and statistical analysis of the behaviors of various elements and atomic bonds in the Zr47Cu46Al7 (at%) MG during a uniaxial tensile test (in the z-direction) simulated using molecular dynamics. Specifically, we investigate the identities of atoms undergoing significant shear strain, and the averaged bond lengths, projected z-lengths, and z-angles (angles with respect to the z-direction) of all the atomic bonds as functions of increasing strain. We show that, prior to yielding, the Zr element and the intermediate (Zr-Zr, Cu-Al) and stronger (Zr-Al, Zr-Cu) bonds dominate the elastic deformation and strength, while the Cu and Al elements and the weaker Al-Al and Cu-Cu bonds contribute more to the highly localized shear transformation. The significant reconstruction, as signified by the cessation of bond-length increment and bond-angle decrement, of the intermediate and the stronger bonds triggers yielding of the material. After yielding, all the elements and bonds participate in the plastic deformation while the stronger bonds contribute more to the residual strength and the ultimate (fracture) strain. The results provide new insights into the atomic mechanisms underlying the mechanical behavior of multicomponent MGs, and may assist in the future design of MG compositions towards better combination of strength and deformability. 
    more » « less